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Synthesis of novel chiral ‘salen-type’ ferrocenyl ligands

Francesco P. Ballistreri,a,* Angela Patti,b,* Sonia Pedotti,b

Gaetano A. Tomasellia and Rosa M. Toscanoa
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Abstract—Two novel chiral C2-symmetrical ferrocenyl ‘salen-type’ ligands were prepared via reaction of suitable ferrocenyldiamines with
3,5-di-tert-butylsalicylaldehyde and tested in the asymmetric epoxidation of unfunctionalized alkenes. Although the asymmetric induc-
tion was quite low, an unusually high trans/cis-epoxide ratio and high reactivity of a trans-alkene substrate were observed.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Enantioselective epoxidations are of great interest since
chiral epoxides are important intermediates in the prepara-
tion of biologically active compounds, widely used in phar-
maceutical and agricultural fields.1

Starting from functionalized olefins, chiral epoxides with
high enantiomeric purity have been prepared by using
Sharpless’ ligands as efficient catalysts,2 although satisfac-
tory results were not obtained in the epoxidation of unfuc-
tionalized alkenes. To reach such a goal, Katsuki3 and
Jacobsen4 have followed a biomimetic strategy employing
salen([N,N-bis(salycilidene)-ethylenediaminato])–Mn(III)
derivatives as catalysts. The control of the alkene approach
to the metal site bearing the transferable oxygen appears
crucial in obtaining good ee values. It also seems deter-
mined by the stereochemistry of the di-imine bridge and
by the presence of bulky substituents on the ligand. The
real oxidant species, supposed to be an oxo Mn(V)-(salen)
intermediate, is considered to have a non-planar structure.
Recent theoretical studies suggest that the enantioselectiv-
ity is also related to the folding of this oxo species, which
leads to the formation of a chiral pocket.5,6

A wide variety of structural modifications of Jacobsen’s
catalyst have been reported, mainly focused on the intro-
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duction of different substituents and/or additional chirality
in the 3,3 0-positions,7 the use of diimine backbones derived
from other diamine sources8 and the synthesis of ‘unsym-
metrical’ Mn(salen) complexes with two different salicyl-
aldehyde-derived moieties.9

Chiral ferrocenes have been widely employed as ligands in
several asymmetric reactions10 due to their peculiar elec-
tronic and steric properties and the availability of stereose-
lective protocols for their synthesis.11 Condensation of 1,1 0-
diaminoferrocene with salicylaldehydes gave achiral deriv-
atives whose Mg, Ti and Zr-complexes have been structur-
ally characterized12 and more recently the synthesis, but
not their use as catalysts, of some planar chiral ferrocene
salen-type ligands has been reported.13

Our interest in the development of new ligands for the
Mn-catalyzed enantioselective epoxidation of olefins14

prompted us to plan the synthesis of two novel ferrocenyl
derivatives L1 and L2, possessing central chirality, C2-sym-
metry and the structural features of the ‘salen-type’ ligands,
in order to test their catalytic activity in this reaction and
here we report the obtained results (Fig. 1).
2. Results and discussion

An examination of the possible C2-symmetric ferrocenic
scaffolds led us to identify 1,n-diferrocenylalkanes or 1,1 0-
disubstituted ferrocenes as possible starting materials; in
both cases, the introduction of a stereogenic centre at the
a-position with respect to the cyclopentadienyl ring seems
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Figure 1. Ferrocenyl–salen ligands.
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to be crucial, since these derivatives undergo nucleophilic
substitution reactions with complete retention of the con-
figuration.15 Starting from commercially available acetyl-
ferrocenes we prepared our target ferrocenyldiamines,
1,4-diferrocenyl-1,4-diaminobutane 4 and 1,1 0-(a-amino-
ethyl)ferrocene 5 according to Scheme 1.

Stereoselective reduction of the carbonyl groups of 1,4-dif-
errocenyl-1,4-butanedione, easily accessible by oxidative
coupling of acetylferrocene, and 1,1 0-acetylferrocene was
accomplished by CBS-oxazaborolidine catalyzed reaction
using BH3ÆMe2S as a hydride source.16 Accordingly to
the literature data, both diols (+)-317a and (�)-517b were
obtained in enantiopure forms and satisfactory diastereo-
isomeric ratios, as determined by chiral HPLC analyses.
Since attempts to perform the direct introduction of amine
functions by treatment of acetylated (+)-3 with aqueous
NH3 resulted in the formation of 2,4-diferrocenylpyrrol-
idine,17a diols (+)-3 and (�)-5 were converted into the
corresponding diacetates and treated with NaN3 to give
homochiral diazides in nearly quantitative yields.

Diamines (+)-4 and (�)-6, obtained by the reduction of the
corresponding diazides, were then reacted with 2,5-di-tert-
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Scheme 1. Synthesis of salen-type ferrocenyl ligands. Reagents and condition:
butyl-salicylaldehyde in refluxing ethanol to afford the
‘salen–Fc’-ligands (S,S)-N,N 0-bis(3,5-di-tert-butylsalicyd-
ene)-1,4-diferrocenyl-1,4-butanediamine, (+)-L1 and N,
N 0-bis(3,5-di-tert-butylsalicydene)-1,10-(a-aminoethyl)ferro-
cene, (�)-L2, whose structure was confirmed on the basis
of their NMR and ESI-MS data.18

The treatment of (+)-L1 or (�)-L2 with Mn(OAc)3 in
EtOH19 gave in nearly quantitative yield the corresponding
Mn(III)-complexes, whose structure was supported on the
basis of their ESI-MS spectra. The complexes obtained
were used as catalysts for the epoxidation of styrene,
1,2-dihydronaphthalene and some standard cis-b-alkylsty-
renes in CH2Cl2/H2O at 25 �C using NaClO as an oxygen
donor and 4-phenylpyridine N-oxide (4-PPNO) as a
coligand.20

From the data reported in Table 1, it seems evident that
both L1- and L2–Mn(III) complexes catalyzed the forma-
tion of epoxides from cis-alkenes in quite low yield and
enantioselectivity. Despite their steric hindrance, the ferro-
cene units seemed too distant from the catalyst active cen-
tre to exert some control on the trajectory of the
approaching alkene, thus explaining the observed lack of
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Table 1. Asymmetric epoxidation of olefinsa

H

R R
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Entry Ligand Alkene Conv.b (%) trans/cis-epoxide ratiob eetrans
b (%) eecis

b (%) Abs config. cis-epoxide

1 L1 Styrene 10 — — 9 (R)c

2 L2 Styrene 15 — — 6 (R)c

3 L1 cis-b-Methylstyrene 15 12 5 40 (1R,2S)c

4 L2 cis-b-Methylstyrene 20 2 4 15 (1R,2S)c

5 L1 cis-b-Methylstyrened 10 3 3 21 (1R,2S)c

6 L1 trans-b-Methylstyrene 64 —e 4 — ndf

7 L1 cis-b-Ethylstyrene 13 14 7 9 ndf

8 L1 cis-b-Propylstyrene 10 14 7 14 ndf

9 L1 cis-b-Butylstyrene 14 14 4 14 ndf

10 L1 1,2-Dihydronaphthalene 42 — — 23 (1R,2S)c

a In all experiments [Alkenes] = 0.14 M, [Catalyst] = 0.007 M, [Coligand] = [4-PPNO] = 0.07 M, [NaClO] = 0.14 M, [Na2HPO4] = 0.05 M at pH 11.2 as
buffer; in all the experiments the epoxide yields are quantitative and taken after 24 h.

b Determined by chiral GC.
c Assigned by comparison with the literature data for specific rotation.
d No coligand added.
e Exclusively trans-epoxide was detected.
f Not determined.
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selectivity. In the series of cis-b-alkylstyrenes, comparable
results were observed independent of the length of the alkyl
chain, except for the methyl derivative, which gave the cor-
responding epoxide with the higher ee (Table 1, entry 3).
The observed effect of the coligand (compare entries 3
and 5) and the absolute configuration of the cis-epoxides
were in agreement with the literature data.14 Unexpectedly,
the reactions of cis-b-alkylstyrenes afforded trans-epoxides
as the main products together with minor amounts of the
cis-diastereomers. The only report of such selectivity refers
to reactions carried out in the presence of cinchona alka-
loid quaternary ammonium salts as additive.21

Interestingly, a better conversion of the substrate was ob-
served starting from trans-b-methylstyrene, but without
enantiodiscrimination (Table 1, entry 6). This is the first
example of such a high reactivity with a trans-alkene
substrate.

According to the mechanism proposed by Jacobsen,4d,22

the epoxidation could proceed via the formation of a rad-
ical intermediate, which can collapse or undergo rotation
followed by collapse. In this context, the remarkable inver-
sion in the trans/cis-epoxide ratio observed here can be the
consequence of an increased lifetime of the radical interme-
diate. As a speculative explanation, this radical stabiliza-
tion could be due to a field effect (through space charge–
dipole or dipole–dipole interactions)23 exerted by the elec-
tron rich ferrocenyl unit in the catalyst.

In order to increase the enantioselectivity of the trans-epox-
ide, we decided to design the synthesis of new ligands con-
taining ferrocenic units as substituents on the aldehydic
moiety or directly linked with a 1,2-diiminic bridge so that
a molecular recognition of alkenes could be obtained
through an electronic effect, creating a preferential path
to the catalyst active site.
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